les suites numériques

2BACS-2020/2021

définition	Toute fonction définie de I partie de $\mathbb N$ vers $\mathbb R$ appelée une suite numérique
------------	--

Suite majorée	$(U_n)_{n\in I}$ majorée par M \longleftrightarrow $(\forall n\in I)$ $U_n\leq M$
Suite minorée	$(\boldsymbol{U}_n)_{n\in I}$ minorée par m $\qquad \longleftarrow \qquad (\forall n\in I) \qquad \boldsymbol{U}_n\geq m$
Suite bornée	$(U_n)_{n\in I}$ bornée $\qquad \longleftarrow \qquad (U_n)_n$ majorée et minorée
	$(\forall n \in I) m \leq U_n \leq M$

Suite décroissante	Suite croissante	
$(\forall n \in I) U_{n+1} - U_n \leq 0$	$(\forall n \in I) U_{n+1} - U_n \ge 0$	
$(\forall n \ge n_0) \qquad U_n \le U_{n_0}$	$(\forall n \geq n_0) \qquad U_n \geq U_{n_0}$	

	Suite géométrique	Suite arithmétique
définition	$egin{aligned} oldsymbol{U}_{n+1} &= q oldsymbol{U}_n \ q$ la raison de la suitegéométrique	$oldsymbol{U_{n+1} = U_n + r}{r}$ la raison de la suite arithmétique
le terme général	$U_n = U_0 \times q^n$ $\forall (n,p) \in I^2 U_n = U_p \times q^{n-p}$	$egin{aligned} oldsymbol{U_n} &= oldsymbol{U_0} + oldsymbol{nr} \ & oldsymbol{U_n} &= oldsymbol{U_p} + (oldsymbol{n-p})oldsymbol{r} \end{aligned}$
La somme de termes consécutifs	$S_n = U_p + U_{p+1} + \dots + U_n$ $S_n = U_p \times \frac{1 - q^{n-p+1}}{1 - q} q \neq 1$ $S_n = (n - p + 1)U_p q = 1$	$S_n = U_p + U_{p+1} + \dots + U_n$ $S_n = \frac{n-p+1}{2} (U_p + U_n)$
trois termes consécutifs	a et b et c trois termes consécutifs $a imes c = b^2$	a et b et c trois termes consécutifs $a+c=2b$

Convergence d'une suite numérique :

	$(\boldsymbol{U_n})_n$ est une suite convergente si elle admet une limite finie	
Définitions	càd $lim\ u_n=l\in\mathbb{R}$	
	$(U_n)_n$ est une suite divergente si elle n'est pas convergente	

Limite de la suite $(\mathbf{n}^{lpha})\;(lpha\in\mathbb{Q}^*)$

$\alpha < 0$	$\alpha > 0$	
$\lim n^{\alpha}=0$	$\lim n^{\alpha} = +\infty$	

Limite de la suite $(q^n) \; (q \in \mathbb{R})$

$q \leq -1$	-1 < q < 1	q = 1	q > 1
n'admet pas de limite	$lim q^n = 0$	$lim q^n = 1$	$\lim q^{n} = +\infty$

Critères de convergences

- > Toute suite croissante et majorée est convergente
- Toute suite décroissante et minorée est convergente

$$\begin{cases} u_n \leq v_n \\ \lim u_n = +\infty \end{cases} \qquad \lim v_n = +\infty$$

$$\begin{cases} u_n \leq v_n \\ \lim v_n = -\infty \end{cases} \qquad \lim u_n = -\infty$$

$$\begin{cases} |u_n - l| \leq v_n \\ \lim v_n = 0 \end{cases} \qquad \lim u_n = l$$

$$\begin{cases} w_n \leq u_n \leq v_n \\ \lim w_n = l \end{cases} \qquad \lim u_n = l$$

Suite de la forme $\mathbf{v_n} = \mathbf{f}(\mathbf{u_n})$:

$$(U_n)_n$$
 suite convergente $\lim u_n = l$ f est continue en l

$$\begin{cases} (v_n)_n \text{ est convergente et} \\ \lim v_n = f(l) \end{cases}$$

Suite de la forme $u_{n+1} = f(u_n)$

 $(U_n)_n$ Suite définie par son première terme u_{n_0} et la relation $\ u_{n+1}=f(u_n)$

$$\begin{cases} f \ est \ continue \ sur \ I \\ f(I) \subset I \\ u_{n_0} \in I \\ (U_n)_n \ suite \ convergente \end{cases}$$

la limite de $(U_n)_n$ est la solution de l'équation

$$f(x) = x dans I$$